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MATH2060B Midterm I Solution

1(a) Since f is differentiable at c, lim
x→c

f(x)− f(c)

x− c
= f ′(c) exists.

lim
x→c

(f(x)− f(c)) = lim
x→c

f(x)− f(c)

x− c
lim
x→c

(x− c) = f ′(c) · 0 = 0

Hence f is continuous at c.

Alternative solution:
Since f is differentiable at c, ∃δ0 > 0 s.t. for 0 < |x− c| < δ0, |f(x)−f(c)x−c − f ′(c)| < 1.
⇒ |f(x)− f(c)| − |f ′(c)||x− c| ≤ |f(x)− f(c)− f ′(c)(x− c)| < |x− c|.
⇒ |f(x)− f(c)| < |x− c|(|f ′(c)|+ 1).
Given ε > 0, let δ = min{δ0, ε

|f ′(c)|+1
}.

Then for 0 < |x− c| < δ, |f(x)− f(c)| < δ(|f ′(c)|+ 1) ≤ ε.

1(b) Suppose x < y. By mean value theorem, ∃c ∈ (x, y) s.t. f(y)− f(x) = f ′(c)(y−x).
Since f ′ is strictly decreasing, f ′(c) < f ′(x) hence f(y)− f(x) < f ′(x)(y − x).
Suppose x > y. By mean value theorem, ∃c ∈ (y, x) s.t. f(y)− f(x) = f ′(c)(y−x).
Since f ′(c) > f ′(x) and y − x < 0, we have f(y)− f(x) < f ′(x)(y − x).

Alternative solution:
Since f ′ is strictly decreasing, f is strictly concave.
Suppose x < y. Let w ∈ (x, y).

For any z < x,
f(y)− f(x)

y − x
<
f(w)− f(x)

w − x
<
f(x)− f(z)

x− z
.

Taking limit z → x−,
f(y)− f(x)

y − x
<
f(w)− f(x)

w − x
≤ f ′−(x) = f ′(x).

Hence f(y)− f(x) < f ′(x)(y − x).
The case x > y is similar.

2(a) The case x = 0 is obvious. Consider x > 0. Let f(x) = ln(1 + x).
By Taylor’s theorem, ∃c ∈ (0, x) s.t.

f(x) = f(0) + f ′(0)x+
f (2)(0)

2!
x2 +

f (3)(c)

3!
x3.

⇒ ln(1 + x)− x+
x2

2
=

1

(1 + c)3
x3

3
.

Since 0 <
1

(1 + c)3
< 1 for c > 0, the inequality follows.

2(b) By 2(a),
−x2

2

xsinx
≤ ln(1 + x)− x

xsinx
≤

x3

3
− x2

2

xsinx
, ∀x ∈ (0, π).

Since lim
x→0+

−x2

2

xsinx
= −1

2
= lim

x→0+

x3

3
− x2

2

xsinx
, by squeeze theorem lim

x→0+

ln(1 + x)− x
xsinx

= −1

2
.

Alternative solution:
Apply l’Hôpital’s rule twice.
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3(a) f is differentiable at c hence continuous at c, so lim
x→c

(f(x)− f(c)− f ′(c)(x− c)) = 0.

Also, lim
x→c

(x− c)2 = 0 and f(x)− f(c)− f ′(c)(x− c), (x− c)2 are differentiable on I.

By l’Hôpital’s rule, lim
x→c

f(x)− f(c)− f ′(c)(x− c)
(x− c)2

= lim
x→c

f ′(x)− f ′(c)
2(x− c)

=
1

2
f ′′(c).

The last equality follows from the condition that f ′ is differentiable at c.

3(b) Define φ(x) =


f(x)− f(c)− f ′(c)(x− c)

(x− c)2
if x ∈ I\{c}

1

2
f ′′(c) if x = c

It can be easily checked that f(x) = f(c) + f ′(c)(x− c) + φ(x)(x− c)2,∀x ∈ I.
By 3(a), lim

x→c
φ(x) = φ(c) hence φ is continuous at c.

4 For each n ∈ Z, mean value theorem implies that ∃xn ∈ (n, n + 1) such that

f ′(xn) =
f(n+ 1)− f(n)

n+ 1− n
⇒ |f ′(xn)| ≤ |f(n+ 1)|+ |f(n)| ≤ 2.

Claim: |f ′(x)| ≤ 3,∀x ∈ R.
Let x ∈ R. If x = xn for some n ∈ Z, done.
Otherwise, x ∈ [n, n+ 1] for some n ∈ Z and mean value theorem implies that

∃c between x and xn such that f ′′(c) =
f ′(x)− f ′(xn)

x− xn
.

⇒ |f ′(x)| = |f ′(xn) + f ′′(c)(x− xn)| ≤ |f ′(xn)|+ |f ′′(c)||x− xn| ≤ 2 + 1 · 1 = 3.

Alternative solution:
Claim: |f ′(x)| ≤ 5

2
,∀x ∈ R.

Fix x ∈ R. By Taylor’s theorem, ∃c ∈ (x, x+ 1) such that

f(x+ 1) = f(x) + f ′(x)(x+ 1− x) +
f ′′(c)

2
(x+ 1− x)2.

⇒ |f ′(x)| ≤ |f(x+ 1)|+ |f(x)|+ 1
2
|f ′′(c)| ≤ 1 + 1 + 1

2
· 1 = 5

2
.


