MATH2060B Midterm I Solution

1(a) Since
$$
f
$$
 is differentiable at c , $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c)$ exists.
\n
$$
\lim_{x \to c} (f(x) - f(c)) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \lim_{x \to c} (x - c) = f'(c) \cdot 0 = 0
$$
\nHence f is continuous at c .

Alternative solution: Since f is differentiable at $c, \exists \delta_0 > 0$ s.t. for $0 < |x - c| < \delta_0, \left| \frac{f(x) - f(c)}{x - c} - f'(c) \right| < 1$. $\Rightarrow |f(x) - f(c)| - |f'(c)||x - c| \leq |f(x) - f(c) - f'(c)(x - c)| < |x - c|$. $\Rightarrow |f(x) - f(c)| < |x - c|(|f'(c)| + 1).$ Given $\epsilon > 0$, let $\delta = \min\{\delta_0, \frac{\epsilon}{|f'(c)|}\}$ $\frac{\epsilon}{|f'(c)|+1}$. Then for $0 < |x - c| < \delta, |f(x) - f(c)| < \delta(|f'(c)| + 1) \leq \epsilon.$

1(b) Suppose $x < y$. By mean value theorem, $\exists c \in (x, y)$ s.t. $f(y) - f(x) = f'(c)(y - x)$. Since f' is strictly decreasing, $f'(c) < f'(x)$ hence $f(y) - f(x) < f'(x)(y - x)$. Suppose $x > y$. By mean value theorem, $\exists c \in (y, x)$ s.t. $f(y) - f(x) = f'(c)(y - x)$. Since $f'(c) > f'(x)$ and $y - x < 0$, we have $f(y) - f(x) < f'(x)(y - x)$.

Alternative solution:

Since f' is strictly decreasing, f is strictly concave. Suppose $x < y$. Let $w \in (x, y)$. For any $z < x$, $f(y) - f(x)$ $y - x$ \lt $f(w) - f(x)$ $w - x$ \lt $f(x) - f(z)$ $x - z$. Taking limit $z \to x^{-}$, $\frac{f(y) - f(x)}{g(x)}$ $y - x$ \lt $f(w) - f(x)$ $w - x$ $\leq f'_{-}(x) = f'(x).$ Hence $f(y) - f(x) < f'(x)(y - x)$. The case $x > y$ is similar.

2(a) The case $x = 0$ is obvious. Consider $x > 0$. Let $f(x) = ln(1 + x)$. By Taylor's theorem, $\exists c \in (0, x)$ s.t. $f(x) = f(0) + f'(0)x +$ $f^{(2)}(0)$ $\frac{f^{(3)}(0)}{2!}x^2+\frac{f^{(3)}(c)}{3!}$ $\frac{1}{3!}x^3$. $\Rightarrow ln(1+x) - x + \frac{x^2}{2}$ 2 = 1 $(1+c)^3$ x^3 3 . Since $0 <$ 1 $\frac{1}{(1+c)^3}$ < 1 for $c > 0$, the inequality follows. 2(b) By 2(a), $\frac{-\frac{x^2}{2}}{2}$ 2 xsinx $\leq \frac{ln(1+x)-x}{x}$ xsinx ≤ $rac{x^3}{3} - \frac{x^2}{2}$ 2 xsinx $, \forall x \in (0, \pi).$ $-\frac{x^2}{2}$ 2 $=-\frac{1}{2}$ $rac{x^3}{3} - \frac{x^2}{2}$ 2 , by squeeze theorem $\lim_{x\to 0^+}$ $ln(1+x) - x$ $=-\frac{1}{2}$

Since $\lim_{x\to 0^+}$ xsinx 2 $=\lim_{x\to 0^+}$ xsinx Alternative solution:

Apply l'Hôpital's rule twice.

xsinx

2 . 3(a) f is differentiable at c hence continuous at c, so $\lim_{x\to c}(f(x) - f(c) - f'(c)(x - c)) = 0$. Also, $\lim_{x\to c}(x-c)^2 = 0$ and $f(x) - f(c) - f'(c)(x-c)$, $(x-c)^2$ are differentiable on I. By l'Hôpital's rule, $\lim_{x\to c}$ $f(x) - f(c) - f'(c)(x - c)$ $\frac{(y-\lambda)(y-\lambda)}{(x-\lambda)^2} = \lim_{x\to\infty}$ $f'(x) - f'(c)$ $2(x-c)$ = 1 2 $f''(c)$. The last equality follows from the condition that f' is differentiable at c .

3(b) Define
$$
\phi(x) = \begin{cases} \frac{f(x) - f(c) - f'(c)(x - c)}{(x - c)^2} & \text{if } x \in I \setminus \{c\} \\ \frac{1}{2} f''(c) & \text{if } x = c \end{cases}
$$

It can be easily checked that $f(x) = f(c) + f'(c)(x - c) + \phi(x)(x - c)^2, \forall x \in I$. By 3(a), $\lim_{x \to c} \phi(x) = \phi(c)$ hence ϕ is continuous at c.

4 For each $n \in \mathbb{Z}$, mean value theorem implies that $\exists x_n \in (n, n+1)$ such that $f'(x_n) = \frac{f(n+1) - f(n)}{n+1-n}$ $\Rightarrow |f'(x_n)| \le |f(n+1)| + |f(n)| \le 2.$ Claim: $|f'(x)| \leq 3, \forall x \in \mathbb{R}$. Let $x \in \mathbb{R}$. If $x = x_n$ for some $n \in \mathbb{Z}$, done. Otherwise, $x \in [n, n+1]$ for some $n \in \mathbb{Z}$ and mean value theorem implies that $\exists c \text{ between } x \text{ and } x_n \text{ such that } f''(c) = \frac{f'(x) - f'(x_n)}{x_n}$ $x - x_n$. $\Rightarrow |f'(x)| = |f'(x_n) + f''(c)(x - x_n)| \leq |f'(x_n)| + |f''(c)||x - x_n| \leq 2 + 1 \cdot 1 = 3.$

Alternative solution:

Claim: $|f'(x)| \leq \frac{5}{2}, \forall x \in \mathbb{R}$. Fix $x \in \mathbb{R}$. By Taylor's theorem, $\exists c \in (x, x+1)$ such that $f(x+1) = f(x) + f'(x)(x+1-x) + \frac{f''(c)}{2}$ 2 $(x+1-x)^2$. $\Rightarrow |f'(x)| \leq |f(x+1)| + |f(x)| + \frac{1}{2}$ $\frac{1}{2}|f''(c)| \leq 1 + 1 + \frac{1}{2} \cdot 1 = \frac{5}{2}.$